


2N3019

SMALL SIGNAL NPN TRANSISTOR

DESCRIPTION

The 2N3019 is a silicon Planar Epitaxial NPN transistor in Jedec TO-39 metal case, designed for high-current, high frequency amplifier application. It feature high gain and low saturation voltage.

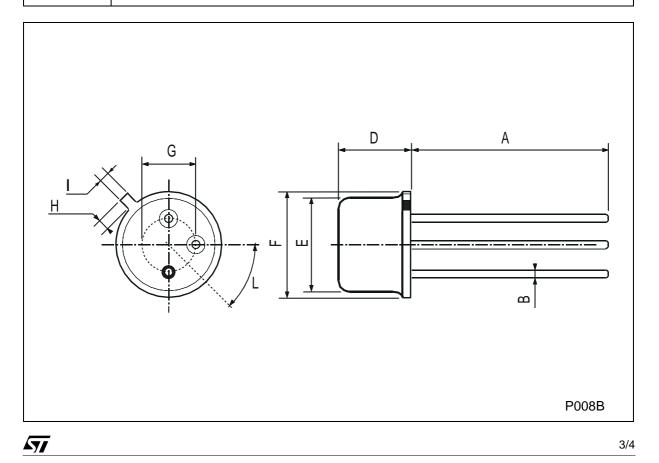
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage ($I_E = 0$)	140	V
V_{CEO}	Collector-Emitter Voltage $(I_B = 0)$	80	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	7	V
Ι _C	Collector Current	1	А
P _{tot}	Total Dissipation at $T_{amb} \le 25$ °C	0.8	W
	at T _C ≤ 25 ^o C	5	W
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-Case	Max	30	°C/W
$R_{thj-amb}$	Thermal Resistance Junction-Ambient	Max	187.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Ісво	Collector Cut-off Current (I _E = 0)	$V_{CB} = 90 V$ $V_{CB} = 90 V$ $T_{C} = 150 \ ^{\circ}C$			10 10	nA μA
I _{EBO}	Emitter Cut-off Current $(I_C = 0)$	$V_{EB} = 5 V$			10	nA
V _(BR) CBO	Collector-Base Breakdown Voltage (I _E = 0)	I _C = 100 μA	140			V
V _{(BR)CEO*}	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = 10 mA	80			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = 100 μA	7			V
$V_{CE(sat)^*}$	Collector-Emitter Saturation Voltage				0.2 0.5	V V
V _{BE(sat)*}	Base-Emitter Saturation Voltage	I _C = 150 mA I _B = 15 mA			1.1	V
h _{FE} *	DC Current Gain		50 90 100 50 15 40		300	
h _{fe} *	Small Signal Current Gain	$I_C = 1 \text{ mA}$ $V_{CE} = 5 \text{ V}$ $f = 1 \text{KHz}$	80		400	
f _T	Transition Frequency	$I_C = 50 \text{ mA} \qquad V_{CE} = 10 \text{ V} \text{ f} = 20 \text{MHz}$	100			MHz
Ссво	Collector-Base Capacitance	$I_E = 0 \qquad V_{CB} = 10 V f = 1 MHz$			12	pF
Сево	Emitter-Base Capacitance	$I_{C} = 0 \qquad V_{EB} = 0.5 \text{ V} \qquad f = 1 \text{MHz}$			60	pF
NF	Noise Figure	$ I_C = 0.1 \text{ mA} V_{CE} = 10 \text{ V} $ $ f = 1 \text{ KHz} \qquad R_g = 1 \text{ K} \Omega $			4	dB
$r_{bb'} \; C_{b'c}$	Feedback Time Constant	$I_C = 10 \text{ mA}$ $V_{CE} = 10 \text{ V}$ $f = 4\text{MHz}$			400	ps

57

* Pulsed: Pulse duration = 300 $\mu s,$ duty cycle \leq 1 %

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	12.7			0.500			
В			0.49			0.019	
D			6.6			0.260	
E			8.5			0.334	
F			9.4			0.370	
G	5.08			0.200			
н			1.2			0.047	
I			0.9			0.035	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

